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ABSTRACT

With the growing scale and complexity of simulation projects,
stand-alone simulation models are becoming too limited to
support the design phase in a sufficiently valid way. Besides
that there is a trend to combine separately developed models
and extend the use of modeled software to prototyping or even
real environments.
This paper describes an open, easy and general concept for
distributed modeling and simulation. The concept is suitable
for research, educational and commercial design
environments. The concept does not require special hardware
or study and is, for the sequencing part, completely
transparent to the simulationist.  It is implemented in the free
and open source simulation tool 'TOMAS', which is based on
the process approach for discrete event simulation.
To show a concrete example, the concept is applied to a
dimensioning problem for AGV systems.

INTRODUCTION

Simulation is nowadays being used in almost all complex
design problems. Some developments changed the demands to
the traditional simulation approach.
Firstly the size of the projects, where simulation is being used
increased, so a simulation model became too big to be
developed by only one single expert. This resulted in the need
to be able to develop models, structured in such a way, that
more experts could work them out in parallel.
Secondly the complexity of the design problems increased,
which led to a design approach where simulation is needed
during different  design phases. A model cannot be specified
immediately in all of its details. Some kind of aggregation
facility is needed.
In the third place the investments in programming efforts
increased dramatically because of the growing degree of
automation in real systems. The need was felt to use modeled
control programming code in the real environment.

And finally, because of the common use of simulation, it
became a real topic to reuse some of the elements developed
in earlier design projects. Object orientation has proven to be a
real answer to this last aspect. For aggregational modeling
there's no platform available yet.
Distributed simulation is presented in this paper as a solution
to cope with the increased size of projects and with the need of
using modeled control algorithms in a real control system.
Although worldwide efforts are being made to make e general
concept for distributed modeling and simulation [Fujii et al.,
1999], and HLA is becoming a standard [Page/Smith, 1998],
the authors felt a need to develop a simple, open and flexible
facility to be used in educational and research environments.
The concept is implemented in the free available process
simulation environment of TOMAS [Veeke/Ottjes, 2000] and
applied to model an AGV control system, where different
traffic control algorithms must be tested on collisions,
deadlocks and capacity bottlenecks.

THE CONCEPT OF DISTRIBUTED SIMULATION

A stand-alone simulation model can be considered a dynamic
structure of elements sequenced on the same time-axis.  The
structure is called dynamic because of the arrival and
departure of temporary elements (normally called the 'flow'
elements). This is schematically shown in fig. 1 for a simple
lock system, where ships arrive from each side, are being
locked and leave. For explanation purposes the lock control
and the lock itself are show separately.

Is a distributed model then a dynamic structure of simulation
models sequenced on the same time-axis? The answer is no,
this definition would restrict the qualification  'distributed' to
simulation models exclusively. But in a simulation model with
control elements it often occurs that the control algorithms are
called at specific moments (events) and respond immediately
(timeless). If we develop the algorithms in separate programs,
then these programs don't have any notion of 'time'. In fig.1
'lock control' will only be called to select a ship that receives
allowance to enter the lock. So the
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Fig. 1. Stand-alone lock model

definition must be: A distributed model is a dynamic structure
of member models and member  programs, where the member
models are synchronized to a common time-axis.
The definition still contains the term dynamic to emphasize
the possible arrival and departure of  member models. In
practice we encounter these situations easily. For example a
model of a production center can be part  of the distributed
model, operating on jobs being exchanged between several
centers. During maintenance the production center is
temporarily unavailable.
Two elements are essential for the definition of a distributed
model: synchronization and member models or programs. The
next paragraphs will explain this further.

SEQUENCING OF EVENTS

The synchronization to a common time-axis is essential for the
definition of distributed simulation. Often the term 'parallel
simulation' is used, but ‘parallel’ is more than just distributed.
In this paper we restrict ourselves to discrete process
simulation as an expansion of discrete event simulation
[Veeke/Ottjes, 2000]. A process is defined as an ordered
sequence of time intervals that connect all the events of one
element (class). This means that all state changes are
performed at discrete moments in time and at any moment
there is one and only one element cq. process  'current'.
In distributed simulation this statement still holds. If only one
element can be current at one moment, in a distributed model
only one member model can be current at any moment or even
better: only one element of all the member models can be
current. This also means the sequencing of events occurring at
the same moment in simulation is still a point of discussion
[p.e. Wieland, 1999].
We hold to the following rules :
•  The first event generated for a specific moment will be

the first event handled at that moment.
•  In case of state events, the state of the system will be

checked after each event and not only when simulation
time proceeds.

•  In a distributed model environment the member model
with the smallest event time receives control. If two
member models have the same event time, the member

model with the event first generated will receive control,
unless specifically requested by the modeler.

Mark the word ‘generated’ instead of ‘scheduled’. The
moment of event-generation is essential in preserving the
reproducibility of the simulaton runs.
From the above can be concluded that a distributed model
synchronizes events to a common time-axis by sequencing the
first events of member models. Member models are assumed
to sequence their events to their own local time-axis.

According to these rules distributed simulation still is quasi-
parallel and absolutely not parallel simulation, because
nothing is running in parallel; so distributed simulation in this
sense doesn't result in faster models (as a consequence of
distributing the member models over different PC's). In this
type of distributed simulation there’s also no problem with
look-ahead periods etc.
Finally distributed  simulation should not be confused with
real-time simulation. These definitions lead in fact to the
conclusion that a combination of distributed and parallel
simulation is needed to make it real-time.

DEFINING A DISTRIBUTED MODEL
STRUCTURE

In our example of fig.1 we can make the model distributed in
more than one way:
•  put the generator and the lock (control included) in

different models
•  put de lock and the lock-control in different models
•  add more locks with each an own control in different

models (see fig. 2).

Fig. 2 Distributed 2-lock model

It completely depends on the goal of the simulation study,
which of the distributed structures is the most appropriate.
Studying different controls for the same lock, option 2 would
be appropriate. If more locks with different attributes should
be studied option 3 is appropriate. This automatically puts the
question of how to structure a distributed model.
Defining a distributed structure from a stand-alone model is
not a straight-forward task.
Starting from a stand-alone point of view, elements can easily
be forgotten, because they are not considered elements there.
For example, control functions are not always derived as
separate elements, but mostly implemented as algorithms
called by elements during the execution of their process. The
problem becomes even more apparent when we consider the
information flows between member models. In a stand-alone
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model all information is available in local memory and one is
often tempted to use it implicitly, especially in cases with a
growing complexity of algorithms. Making a distributed
model based on a stand-alone model then becomes a difficult -
if not impossible-job.
Developing distributed models needs a systematic modeling
approach, where member models appear according to well-
defined structuring rules. Objective oriented modeling
[Veeke/Ottjes, 2000]  is such a modeling approach, based on
the principles of systems theory [in 't Veld, 1998]. The
approach starts and proceeds systematically with the goal of
the design project, consistently distinguishes between
operational and control functions and defines two
particularizing principles: differentiation and specialization.
Differentiation means a combination or division of functions,
specialization refers to a combination or division of flows.
However, the most important aspect of objective oriented
modeling is the use of 'functions' (why) rather than 'tasks'
(what).
From the function definition, processes can be derived which
form the basis of each member model. The approach does start
with a description of transformations the flow elements
undergo, but
after that functions are derived by means of abstraction. These
functions are minimally needed to reach a prescribed goal.
This concept is necessary to find the right structuring (and is
momentarily part of our research into aggregated modeling).
Fig. 3 globally shows the steps to define a distributed
structure.

Fig. 3. Design steps for a distributed structure

Once the processes (or functions) and flows are defined and
the structuring according to differentiation and specialization
rules has taken place, the 'normal' approach [Veeke/Ottjes,
1999] can be applied to design member models in terms of
elements and attributes.

IMPLEMENTATION

From the preceding paragraphs it follows that the next
elements are necessary to create a distributed model:

1. a mechanism to sequence elements of a member model
locally

2. a mechanism to sequence member models
3. a mechanism to exchange data and elements between

member models and programs.
The local sequencing mechanism in each member model is a
well-known discrete event mechanism for stand-alone
simulation [Zeigler,1985]. In the earlier mentioned TOMAS
platform the mechanism is extended to a discrete process
mechanism, but the underlying concept is completely discrete
event oriented. However, to connect it to the second
mechanism some essential changes are required. They will be
explained later.
The sequencing mechanism to synchronize member models
can be considered a kind of "super sequencing mechanism".
Each member model communicates its first future event to the
mechanism and waits for allowance to perform the event.
After allowance it becomes the 'current member', performs the
event, communicates its next event and waits again.
From this point of view it is clear the mechanism performs the
role of "time server" and therefore we've implemented it as a
client-server concept.
All member models now have to address only one central
server to become synchronized to the common time-axis.

Because each member can run on a different machine, the
address is implemented
as being an IP-address. Messaging is based on the  TCP/IP
standard using basic Windows sockets. In
fact each member model can connect to the time server just by
specifying the IP-address of the machine, the time server is
running on. If no IP-address is specified the model is
considered stand-alone.

Fig. 4. Timer Server for synchronization

Besides the 'next event' message described above, the server
mechanism must understand a 'start'- and a 'finish'- message to
support the dynamics of the distributed structure. After a
'start'-message the server acknowledges its presence, makes
the connection and communicates a unique model-
identification to the member model. The current server time is
also added to the message, so the member model will set its
simulation clock correctly.  A 'finish'-message disconnects the
member model from the structure.
There is only one problem left to make this concept working.
Each stand-alone discrete process/event simulation will end a
simulation run automatically when the event chain becomes
empty, because nothing will happen anymore. A member
model however is not allowed to draw this conclusion
autonomously. Each member model is assumed to
communicate with other member models (why should it
otherwise be part of the structure?). This means, that events
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can be generated by other member models. So if the local
event chain becomes empty, it still is possible future events
for this member will be created by other members. Therefore a
member model sends an 'empty'-message to the time server to
express this situation.
If all member models have sent an 'empty'-message the time
server finishes the distributed simulation completely by
sending a 'finish'-message to all member models.
All messages described so far are transparent to the user of the
model. They are a direct consequence of specifying the IP-
address of the time server before starting the simulation run
and implemented in the internal sequencing mechanism of the
member models.
Member programs must be connected explicitly and therefore
the methods 'ConnectToServer' and 'DisConnectFromServer'
are available.

Inherently to the distributed concept member models,
programs and Time Server must be able to communicate
freely with each other. To support this the same messaging
mechanism is being used, which leads to the general
distributed concept of the
next figure.

Fig. 5. Time/Message Server concept

First of all, all members must be able to communicate freely
with the server. For example general information messages
must be provided. Examples are requests about the simulation
clock time, the wall clock time and a list of currently
connected members. Requests can be made with the method
'SendMessageToServer(msg)'.
Member models and programs can communicate with each
other by the method 'SendMessageToModel(model,msg)'. All
messages still are being routed via the Server.
To receive and interpret messages each member must provide
a receiving method. The local sequencing mechanism is the
central reception point. It first checks if the received message
is a standard message for the simulation. If not, it calls the
receiving method provided by the user.
For reasons of ease-of-use some other methods are added, but
they are not essential for the distributed concept.

VERIFICATION AND VALIDATION

The verification process must assure that the model is doing
what it is supposed to do. In a stand-alone model this is

normally achieved by tracing events and  comparing
simulation results with theoretic calculations. In a distributed
environment message tracing becomes an essential part of the
verification process. For this purpose a separate Message
Trace module is added to each member and the time server to
show the messages sent and received.

Distributed simulation influences (and can enhance) the
validation process.
The authors are normally involved in projects, where a real
system not even exists. So the validity of the simulation
completely depends on the modeling approach being used.
Recent papers addressed this issue in detail [Veeke, Ottjes,
1999-2000]. In distributed simulation the modeling approach
plays an even more important role, because the modeled
system must be divided into subsystems (member models and
programs) beforehand. This was already shown in fig.3.
The validity can also be proven by incrementally replacing
modeled elements by real (eventually scaled) equipment or
machines. Especially control software will be tested in this
way. At this point the interoperability becomes a topic. For
that purpose the concept is now being made HLA-compliant
(only the Time Server needs to comply to this standard,
because the whole structure of members can be considered
one model again!).

APPLICATION

The concept will now be applied to a structure with control
elements. An application, where the concept is used for a
structure of member models can be found in another submitted
paper of this conference [Ottjes,Veeke,2001].
The application refers to a container terminal, where AGV’s
(Automatic Guided Vehicles) are used for the transportation of
containers from quay to stacking area v.v. Major characteristic
of this system is the high density of AGV’s in a relatively
small area, combined with high demands on the flexibility in
AGV routings. Quaycranes regularly change position along
the ships and dynamically block or release routing area.
Traffic control is a key item for the capacity of the AGV-
system. Prevention of collisions and deadlocks and the
optimal use of the route layout (given the routes to the
AGV’s) are considered its main tasks. Because of the high
costs of quay area no more space may be used for the AGV-
system than is strictly necessary.
Quay cranes show large and unpredictable variations in
operational speed. Because of that the system as a whole does
not have a unique bottleneck. Sometimes the quaycranes
determine the production capacity, sometimes the AGV-
system and sometimes the stacking system. It is however not
clear at what moment each system is the bottleneck. To
answer that question it is necessary to be able to determine the
real capacity of each system. For the quaycranes this is a
rather simple question. For the AGV-system it is more
complicated. Small changes in layout and traffic control can
have enormous effects for the total capacity of the AGV-
system.
The question is therefore to develop a simulation model to:
- determine the operational capacity for different layouts

given a traffic control
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- determine the operational capacity for different traffic
controls given a routing layout.

The model should be developed in a way, that it can be used in
a laboratory environment with real traffic control and scaled
AGV’s.
An AGV-system globally consists  of 5 elements:
the set of AGV’s, the area layout, traffic control, route
assignment (routing) and job assignment. Navigation control
is assumed to be a part of the AGV’s themselves.
Because insight in operational capacities is asked, routing and
job assignment will not be part of the model.
Instead, by running the model one must gain insight in the
maximum throughput of the traffic system, so that routing and
job assignment can be developed according to this knowledge.
The maximum number of AGV’s through some route layout
must be determined, so for each route the number of AGV’s
passing it is one of the important parameters.

Fig. 6. AGV system with control functions.

One of the requirements is, to be able to connect real AGV’s
in the future. Modeled AGV’s then still can  be simulated in
one single member model, but we have to make separate
programs for layout definition (routes) and visualization. In
this way single AGV's can communicate with these modules.
A route will be communicated to each modeled  AGV, based
on some kind of AGV arrival pattern for each route. To
accomplish this, we need also a generator function and so the
route definition program becomes a real member model.
Connection of real AGV's will be explained later.
If the level of AGV intelligence becomes an issue, we can also
model this local control as a separate program. In this case we
restrict the model to non-intelligent AGV’s. So the structure of
our distributed model looks like fig. 7.

Fig. 7. Distributed model for the capacity model

Route definition is implemented as a interactive model with
Delphi 5 and TOMAS. The user can draw route tracks or
simply read a file with routes already defined.

Fig. 8. Route definition window

Routes can be defined by selecting predefined technical
movements of the AGV's. Theoretically perfect curves are
available by default, but measured curves can also be entered
consisting of (x,y)-coordinates and orientations, relative to the
starting point.  A route is composed as an ordered set of these
route elements.
In this way a traffic situation can be created with parallel and
crossing routes. To generate AGV traffic for this situation, the
user can define arrival distributions of AGV's for each starting
point of the routes. In this way the real traffic can be simulated
as expected from quaycranes to stack etc. To determine the
operational capacity however all  kinds of distributions are
made possible.

Fig. 9. AGV arrival patterns on a route

A special ‘distribution’ is specified as ‘minimum’. In that case
a next (modeled) AGV is generated at the moment the
preceding AGV physically releases the source position. This
can be considered the case with maximum AGV workload.
Looking at the resulting arrival rate of AGV's at the endpoints
of routes a good estimate of operational capacity is obtained.

THE AGV MODEL
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To offer maximum flexibility in research goals, the modeled
AGV is kept as simple as possible. AGV's are only assumed to
be able to follow a given route. The route is communicated to
the AGV model by the route definition program translated into
a minimum number of relevant points. The AGV is able to
translate this information into technical movements. The
model uses a technical specification of an AGV based on data
entered by the user.

Fig. 10. AGV specification

Besides dimension and speed data, two parameters can be
specified for the communication part. The 'reporting distance'
specifies the interval length, after which the AGV informs
traffic control its current position, orientation and speed. So
this is the basis of the discrete image, that traffic control has of
the current situation. On this image the decisions of traffic
control will be based.
To facilitate a visualization of the system another interval can
be specified. A small interval is used for smooth animation
and a detailed view of collisions and deadlock situations, but
increases the communication. Making the interval equal to the
reporting interval, the visualization shows exactly what image
traffic control has of the current situation.

TRAFFIC CONTROL

Traffic control controls the progress of all AGV's. AGV's are
allowed to continue based on a general 'stop point'
mechanism. After route definition has ordered the AGV model
to generate a new AGV at some position, the AGV
communicates its arrival to traffic control and tells it what
route it will follow.
The AGV assumes its stop point to be its current position and
waits for a message from traffic control. If traffic control
decides, that the AGV's allowed to drive it calculates a
position on the route, to which the AGV can safely move: the
new stop point. This stop point is communicated to the AGV.
The AGV reacts by accelerating to a feasible speed and stops
at this point, unless meanwhile a new stop point has been
received. It's up to traffic control to prevent collisions and
deadlocks and too much acceleration or deceleration of
AGV's.
By means of  this mechanism many variations of traffic
control can be implemented. Only communication must be
based on stop points. It is even possible to let the AGV's drive
freely, with no control at all. This is accomplished by sending
a stop point equal to the endpoint of a route, at the moment of
arrival of an AGV. This alternative can be used to investigate
possible overlaps between defined routes and finding solutions

for it. During the design phase, one always has the choice
between a larger distance between routes or complicating the
control.
This clearly shows the flexibility of a distributed model. Each
member program or model can be changed without changing
the other members, only the interface must be well-defined. In
this case the interface mechanism with stop points is essential.

VISUALIZATION

The visualization program is kept apart from the AGV model,
to support the visualization of real AGV's. During the first
steps of development (with only modeled AGV's) it is not
strictly necessary.
The visualization receives the route layout from route
definition at the start of a simulation run. When an AGV is
created it reports its position and orientation to the
visualization program. As explained in the AGV model
section this is repeated after each driven distance as specified
in the AGV screen. Added to that the position and orientation
are reported whenever an AGV comes to a standstill.
Visualization is normally used for two purposes:
a. presentation to the management
b. verification and validation.
AGV systems are perfect examples of models where
visualization./animation is needed for verification and
validation. Showing the AGV's makes it possible to check the
correctness of traffic controls, because collisions can't be
detected otherwise. Even deadlock situations can only be
studied effectively if a visual image of the situation is
available.

Fig. 11. Visualization

REAL AGV'S

Connecting real AGV's to this distributed model only becomes
an issue at the moment traffic control and layout are well-
defined. At that moment the primary goal of the model
changes from research to validation and presentation. Real
AGV's can't take part in the generation process of modeled
AGV's, they will be permanently present in the simulation
environment. Given a starting point of a real AGV, route
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definition will be extended to generate routes for these AGV's
based on a given layout. The only restriction in this case is,
that the starting point of a real AGV must be a defined
position on some route in the modeled layout. The server also
needs to be able to run in real-time.

CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper a simple distributed simulation approach for
research and education was presented, that offers many profits
to the current simulation environments.
It enables a more 'natural' modeling of systems, that will be
distributed in reality. For large projects it supports the division
of simulation efforts and finally it extends the usability of
software from the modeling environment to the prototyping
and operational systems.
The concept is completely based on standard available
communication mechanisms in Windows platforms.
The client server concept also makes it possible to do the
research in an open and easy to use environment, while the
complete distributed model still can comply to the HLA
standard.
The concept was tested (and proved working) in internet
sessions, where the time server program and a member model
was running at Delft University and the other member models
and programs in Wollongong, Australia.
Now the authors are experimenting with this concept in two
ways:
•  making a laboratory environment where a robotized

production system will be connected to an AGV
transportation system

•  applying the concept to aggregated modeling, where the
communication is used to connect global and detailed
(zoomed) models. The process approach is already found
to be the key item for these applications.

Finally, the simulation tool used "TOMAS" and a demo-
version of the application described can be found on the
website www.tomasweb.com [Veeke, Ottjes, 2000].
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